API RP 11AR:2000(R2014) pdf download.Recommended Practice for Care and Use of Subsurface Pumps
1 Scope
1.1 The intent of this recommended practice is to give infor- mation on the proper selection, operation and maintenance of subsurface pumps so the best economical life can be obtained.
1.2 The basic walking-beam sucker rod combination for producing fluids from the ground had its beginning in very early history. In more recent times, many advances in design and metallurgy have evolved. The method is so popular that today approximately 90 percent of all artificially lifted wells are produced by a sucker rod pump.
1.3 The downhole sucker rod pump is only one portion of the pumping system (see Figure 1). The other major compo- nents are the sucker rod string, the surface pumping unit and the prime mover. For proper pumping operation and long maintenance-free runs, all components of the system must be designed and sized properly, taking into account well depth, the amount and viscosity of fluids (oil, water or gas) to be produced, and abrasiveness and corrosiveness of fluids. A failure of any one of the pumping components will result in a shut down of the system, resulting in a costly repair, down- time and possible loss of production.
4.4 TUBING PUMPS (FIGURE 2)
a. The tubing pump is rugged in construction and simple in design. The barrel of a tubing pump is attached directly to the tubing string, usually at the bottom. Below the pump barrel is a seating nipple that receives and locks in place the standing value of the pump assembly. After this assembly has been run into the well and landed, the plunger assembly is run in on the sucker rod string. When the correct number of sucker rods and pony rods are run to allow the plunger assembly to fit into the pump barrel and seat the standing valve in the seating nip- ple, the plunger is ready for final spacing. b. The standing valve is run into the wall spacing to the bot- tom of the pump plunger by means of a standing valve puller. When the standing valve engages the seating nipple, it locks in place with either a mechanical lock or friction cups. The plunger may then be released from the standing valve by rotating the rod string counterclockwise. The plunger assem- bly is then raised to clear the standing valve on the bottom of the pump stroke, plus about a foot to compensate for rod overtravel. Final spacing is adjusted by the placement of the clamp on the polished rod. c. As the motion of the pumping unit causes the rods and the plunger to reciprocate, the pumping action begins. As the plunger starts the upstroke, the weight of fluid in the tubing causes the traveling valve to close. The upward motion of the plunger causes reduction of pressure in the pump barrel below the plunger and the pressure of fluid in the casing annulus then opens the standing valve, filing the void created by the upward movement of the plunger.
API RP 11AR:2000(R2014) pdf download
PS:Thank you for your support!